
Noname manuscript No.
(will be inserted by the editor)

Multimodal Optimization by Particle Swarm Optimization with
Graph-Based Speciation Using β-Relaxed Relative Neighborhood Graph
and Seed-Centered Mutation

Received: date / Accepted: date

Abstract Multimodal optimization is a very difficult task
to search for all optimal solutions at once in optimization
problems with multiple optimal solutions. Speciation using
a proximity graph has been proposed to solve multimodal
optimization problems. Gabriel graph (GG) and relative neigh-
borhood graph (RNG) are often used as the proximity graph.
The search efficiency is good when GG is used, but the dis-
covery rate of the optimal solutions is lower than when RNG
is used. In this study, we propose a new proximity graph
with a parameter β named “β relaxed relative neighborhood
graph” (βRNG) that can be generated relatively fast and
has intermediate properties between GG (β=1) and RNG
(β=2). βRNG is adopted in SPSO-G (Speciation-based Par-
ticle Swarm Optimization using Graphs) for graph-based
speciation. Also, seed-centered mutation is introduced. The
performance of the proposed method is shown by optimiz-
ing well-known benchmark problems for “CEC’2013 spe-
cial session and competition on niching methods for multi-
modal function optimization”.

Keywords multimodal optimization, particle swarm
optimization, speciation, graph-based speciation, proximity
graph

1 Introduction

There exist many studies on solving optimization problems
using population-based optimization algorithms (POAs) in
which a population or multiple search points are used to
search for an optimal solution. Swarm intelligence algorithms
inspired by collective animal behavior such as particle swarm
optimization (PSO) [1] and ant colony optimization are POAs.
In general, POAs are stochastic direct search methods, which
only need function values to be optimized, and are easy to

implement. For this reason, POAs have been successfully
applied to various optimization problems.

In industrial design problems, it is sometimes desirable
to find as many optimal solutions as possible including sub-
optimal solutions instead of finding only one optimal solu-
tion. After finding various solutions, one can choose a so-
lution to be adopted from other perspectives such as the
stability of the solution in the neighborhood. An optimiza-
tion problem with multiple optimal solutions is called multi-
modal optimization problem (MMOP). When trying to solve
the MMOPs with POAs, the diversity of search points de-
creases as the search progresses generally and the search
points converge near a certain solution. Therefore, MMOPs
are very difficult to solve and researches on MMOPs are ac-
tively conducted to find multiple solutions in one trial.

In order to obtain multiple solutions, it is required that
the search points are divided into several subpopulations,
each subpopulation shares the search space, and the search
is performed by each subpopulation with maintaining diver-
sity. This technique is called niching or speciation [2, 3].
Representative methods include: sharing, where the fitness
of a search point is shared by search points in a certain range;
clearing, where the size of a subpopulation is limited by re-
moving some points which have lower fitness in the subpop-
ulation; crowding, which maintains diversity by replacing
a newly generated point with the most similar search point
during the survivor selection; speciation according to the ra-
dius of the subpopulation [4,5]; speciation using a clustering
method [6]; and speciation using a proximity graph [7, 8].

In this study, speciation using a proximity graph, or graph-
based speciation is investigated. Gabriel Graph (GG), Rela-
tive Neighborhood Graph (RNG), and β skeleton are used
as the proximity graph for speciation. When GG is used
for speciation, the convergence to optimal solutions is fast,
but especially in high-dimensional problems, GG is almost
same as a perfect graph at the beginning of the search and the
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search points cannot be divided into subpopulations. When
RNG is used, the search points can be divided into subpop-
ulations, but the convergence to optimal solutions is slow. In
case of β skeleton, the number of search points is limited
by high computational cost and it is difficult to find many
optimal solutions.

We propose β-relaxed RNG (βRNG) that can realize
an intermediate graph between GG and RNG, and has the
same order of time complexity for graph generation as GG
and RNG. By specifying β, βRNG can relax the neighbor-
hood condition of RNG and can generate a graph close to
GG. In this study, PSO with graph-based speciation using
βRNG(SPSO-G/βRNG) is proposed. βRNG is set to RNG
at the beginning of the search to generate many subpopula-
tions and gradually changed to GG at the end of the search
to improve the convergence. Also, seed-centered mutation
is introduced. The performance of the proposed method is
shown by optimizing well-known benchmark problems for
“CEC’2013 special session and competition on niching meth-
ods for multimodal function optimization” [9].

In Section 2, proximity graphs are explained and βRNG
is proposed. Speciation methods are explained in Section 3.
In section 4, PSO is briefly explained and SPSO-G/βRNG
is proposed. The experimental results are shown in Section
5. Finally, conclusions are described in Section 6.

2 Proximity Graphs

2.1 Definition

Graph G can be described G(V,E) where V is the set of
vertices and E is the set of edges. A proximity graph is
a graph in which two vertices are connected by an edge if
and only if the vertices satisfy particular geometric require-
ments. When two vertices vi, vj ∈ V satisfy a neighborhood
condition, the vertices have an edge (vi, vj) ∈ E. Nearest
neighborhood graph, Gabriel graph [10], relative neighbor-
hood graph [11], β skeleton [12] are proposed as proximity
graphs.

In Gabriel graph (GG), two vertices vi and vj satisfy
the neighborhood condition when the hypersphere, of which
diameter is the line between the vertices, does not have any
other vertex inside of the hypersphere. GG can be defined as
follows:

(vi, vj) ∈ E ⇐⇒ HS

(
vi + vj

2
,
||vi − vj ||

2

)
∩V = ϕ (1)

where HS(c, r) shows the hypersphere with radius r cen-
tered at c.

HS(c, r) = {x | ||x− c|| < r} (2)

If and only if any vertex vk does not exists in the hyper-
sphere, the vertices are connected by an edge.

In relative neighborhood graph (RNG), two vertices vi
and vj satisfy the neighborhood condition when the inter-
section of two hyperspheres with radius ||vi − vj || centered
at vi and vj does not have any other vertices inside of the
intersection as shown in Figure 1. The intersection is called
as a lune.

Fig. 1 Neighborhood condition for relative neighborhood graph

RNG can be defined as follows:

(vi, vj) ∈ E ⇐⇒ HS(vi, ||vi − vj ||) ∩ (3)

HS(vj , ||vi − vj ||) ∩ V = ϕ

RNG is a subgraph of GG.

2.2 β-relaxed Relative Neighborhood Graph

We propose a new proximity graph with a parameter β named
β-relaxed RNG (βRNG). The neighborhood condition for
βRNG is that no other vertices are included in the intersec-
tion of the RNG lune and the hypersphere specified by the
parameter β. For a pair of vertices vi and vj , a hypersphere
centered at the midpoint of the two vertices is defined so that
a point u on the hypersphere satisfies the following equa-
tion:

β =
||vi − u||2 + ||vj − u||2

||vi − vj ||2
, 1 ≤ β ≤ 2 (4)

This can be transformed as follows:

||vi − u||2 + ||vj − u||2 = β||vi − vj ||2 (5)

2||vi + vj
2

− u||2 + 1

2
||vi − vj ||2 = β||vi − vj ||2 (6)

||u− vi + vj
2

||2 =

(√
2β − 1

2
||vi − vj ||

)2

(7)

Therefore, βRNG(V,E) can be defined as follows:

(vi, vj) ∈ E ⇐⇒ (8)

HS(vi, ||vi − vj ||) ∩HS(vj , ||vi − vj ||) ∩

HS

(
vi + vj

2
,

√
2β − 1

2
||vi − vj ||

)
∩ V = ϕ

Figure 2 shows an example of βRNG, where the shaded re-
gion is the conditional region when β=1.5.

βRNG is a subgraph of GG and a supergraph of RNG.
Similar to the β skeleton, βRNG of β=1 is GG and βRNG
of β=2 is RNG.
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Fig. 2 Neighborhood condition for βRNG of β = 1.5

The neighborhood condition of two vertices in βRNG
can be determined as follows:

– If there exists no vertex vk which satisfies ||vi − vk|| <
||vi − vj ||, ||vj − vk|| < ||vi − vj || and ||vi − vk||2 +
||vj − vk||2 < β||vi − vj ||2, vi and vj is connected.

3 Speciation

Speciation is biologically an evolutionary process to form
new biological species by the development of one species
into two or more genetically distinct ones. The idea of spe-
ciation has been mainly used for multimodal optimization to
capture multiple optimal or suboptimal solutions simultane-
ously. Each species evolves to find an optimal or a subopti-
mal solution.

There exist some types of speciation methods [13] such
as radius-based speciation, nearest neighbor-based specia-
tion and graph-based speciation. In the following, a popu-
lation of search points, or individuals is described as P =

{xi | i = 1, 2, · · · , N} where N is the population size and
P is the target of speciation. The seed of a species to which
an individual xi belongs is denoted by xseed(xi).

3.1 Radius-Based Speciation

In radius-based speciation, the neighborhood condition is
defined by species radius R [5, 14, 15]. A species is com-
posed of a species seed and individuals inside the hyper-
sphere of radius R centered at the seed. Given individuals
and an objective value for each individual, the algorithm for
radius-based speciation is described as follows:

1. A population is sorted according to the objective values
in the order of best objective value first.

2. The best individual xb in the sorted population becomes
a new species seed (seed(xb) = b). The population mem-
bers that exist within the specified radius from the seed
are assigned to the species (seed(xi) = b).

3. The members of the species including the seed are deleted
from the population.

4. Go back to 2 until the population becomes empty.

In this speciation, it is difficult to select a proper radius,
which depends on problems to be optimization and also the
search process in the optimization.

3.2 Graph-Based Speciation

In graph-based speciation, a species is composed of an indi-
vidual and its adjacent individuals that are connected to the
individual by edges in a graph. In radius-based speciation,
a species is formed by the best individual and the individ-
uals within the species radius, where both individuals are
selected from individuals whose species has not been deter-
mined. Similarly, in graph-based speciation, a species can
be formed by the best individual and the individuals adja-
cent to the best individual. In this case, for example, if the
second best individual is adjacent to the best individual, the
second best individual cannot become a seed. In this study,
the following speciation is adopted in order to avoid such
situation.

1. A proximity graph is generated and the set of edges E is
determined.

2. For each individual xi, i = 1, 2, · · · , N ,
(1) The adjacent individuals of xi are obtained using E. A

group is composed of xi and the adjacent individuals.
(2) The best individual in the group is the seed of xi. In

case of function maximization, the seed can be defined
as follows:

seed(xi) = argmax
h∈H

f(xh), (9)

H = {h|h = i or (xi,xh) ∈ E}
3. Individuals with the same seed form a species. The num-

ber of species is same as the number of seeds.

In this study, a modified version of this type of graph-
based speciation is adopted.

4 Multimodal Optimization Using Graph-based
Speciation

4.1 Optimization Problems

An function maximization problem with lower bound and
upper bound constraints can be described as follows:

maximize f(x)

subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(10)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. The region that sat-
isfies the upper and lower bound constraints is called search
space.
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4.2 Particle Swarm Optimization

PSO [1, 16] is an optimization method based on swarm in-
telligence which is inspired by the movement of a bird flock.
PSO imitates the movement to solve optimization problems
and is considered as a population-based stochastic search
method or POA.

Searching procedures by PSO can be described as fol-
lows: A group of agents maximizes the objective function
f . At any time t, each agent i knows its current position xt

i

and velocity vt
i (i = 1, 2, · · · , N). It also remembers its per-

sonal best visited position found so far x∗
i and the objective

value pbesti.
x∗
i = arg max

τ=0,1,···,t
f(xτ

i ), pbesti = f(x∗
i ) (11)

Two models, gbest model and lbest model have been pro-
posed [17, 18]. In the gbest model, every agent knows the
best visited position x∗

G in all agents and its objective value
gbest. In the lbest model, each agent knows the best visited
position x∗

l in the neighbors and its objective value lbesti as
follows, where the neighbors are defined by a topology such
as ring, mesh, star and tree topology.
x∗
l = arg max

k∈Ni

f(x∗
k), lbesti = f(x∗

l ) (12)

where Ni is the set of neighbor agents to i. In the gbest
model, l = G, Ni is all agents and lbesti is gbest. The ve-
locity of the agent i at time t+ 1 is defined as follows:
vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xt

ij) (13)

+c2 rand2ij (x
∗
lj − xt

ij)

where w is an inertia weight and randkij is a uniform ran-
dom number in [0, 1] which is generated in each dimen-
sion. c1 is a cognitive parameter and c2 is a social parameter
which represent the weight of the movement to the personal
best position and the group/neighbors best position, respec-
tively. Usually, the maximum velocity V max

j is specified to
avoid too large velocity and |vij | ≤ V max

j is satisfied.
The position of the agent i at time t + 1 is given as fol-

lows:
xt+1
i = xt

i + vt+1
i (14)

The linearly decreasing inertia weight (LDIW) method
[19] is one of well-known strategies, where w is linearly de-
creasing with the number of iterations as follows:

w = wmax − (wmax − wmin)
t

Tmax
(15)

where wmax and wmin are the maximum weight and the
minimum weight for w, respectively. Tmax is the maximum
number of iterations. Recommended values are wmax=0.9,
wmin=0.4, c1=c2=2 and V max

j =uj .
Also, several methods for inertia weight have been stud-

ied [20]. In this study, constant inertia weight of w = 0.4

and random inertia weight of w = 0.4+ 0.5u(0, 1) are used
with c1=c2=2, where u(a, b) is a uniform random number in
[a, b].

4.3 SPSO-G/βRNG

In SPSO-G/βRNG, graph-based speciation using “personal
best positions”, or P={x∗

i } is adopted because the personal
best positions have more accurate information about local
optimal solutions than agent positions.

Some modifications to standard PSO are applied for pro-
posed method as follows:

– If an edge is too long, it is likely to connect vertices be-
longing to different species. Edges that satisfy the fol-
lowing equation are removed in order to cut about 10%
long edges.

d > d̄+ 1.281552σ (16)

where d is the length of an edge, and d̄ and σ are average
and standard deviation of all lengths of edges, respec-
tively.

– If seed(x∗
i ) = i, x∗

i is the best position in a species and
is a candidate of an optimal solution. Also, if seed(x∗

i ) =

l and seed(x∗
l ) = l, x∗

i is adjacent to the candidate. In
these cases, the inertia weight w is 0.4 in order to search
in a small area near the candidate. In other cases, the
inertia weight w is 0.4+0.5u(0, 1) in order to search in
wide areas.

– Seed-centered mutation is adopted, which is similar to
DE/best/1/bin strategy of differential evolution (DE), as
follows:

mi = x∗t
seed(x∗

i )
+ F (x∗t

r2 − x∗t
r3) (17)

xt+1
ij =

{
mij , if j = jrand or u(0, 1) < CR

x∗t
ij , otherwise

(18)

vt+1
ij = u(0, 1)(x∗t

ij − xt+1
ij ) (19)

The first equation defines a mutation strategy where r2
and r3 are random numbers in {1, 2, · · · , N} excluding
i and are different from each other, and F is a scaling
factor. A mutant vector mi is generated centered at the
seed of the agent to search around the candidate solution.
The second equation defines binomial crossover where
jrand is a randomly selected integer in [1, D] (D is the
number of dimensions), and CR is a crossover rate. At
least one element of the mutant vector is inherited by
the new position using jrand. The velocity is reset to
a randomized direction from xt+1

i to the personal best
position. The mutation is applied with probability Pm =

0.2 with F=1 and CR=0.1 based on some preliminary
experiments.

– When a new position is out of the search space, the po-
sition is repaired to be the upper or lower bound. Also,
the velocity is changed to − 1

2v
t+1
ij so that the bounds are

not violated again.
– An archive is adopted to hold many solutions. The archive

is initially filled by initial agents. When an agent moved
and the new position is generated, the new position is
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stored if the number of the solutions in the archive is
less than the archive size NA. Otherwise the position is
checked whether it may be stored in the archive or not.
If the position is better than the closest solution in the
archive, the closest solution is replaced with the new po-
sition.

The algorithm of SPSO-G/βRNG is as follows:

1. β is specified for βRNG. The number of agents N and
the archive size NA are specified. Usually, NA=N .

2. Initialization: Initial agent i with a position xi and a ve-
locity vi is generated. xi is randomly generated in the
search space where each element xij is a uniform ran-
dom number in [lj , uj ]. vi = 0 and Vmaxj

= 1
2 (uj− lj).

x∗
i =xi. The archive is filled by the initial agent posi-

tions.
3. Termination: If the number of function evaluations ex-

ceeds the maximum number of function evaluations FEmax,
the algorithm is terminated.

4. Speciation: If dynamic control of graph is adopted, β is
updated, which is explained later. βRNG is created us-
ing {x∗

i }. Long edges are removed according to Eq.(16).
seed(x∗

i ) is determined according to the graph-based
speciation algorithm.

5. Update of agents: Mainly, the agents are updated by the
movement. If xi is near a candidate of optimal solution,
namely seed(x∗

i )=i or seed(x∗
seed(x∗

i )
) = seed(x∗

i ), w
is set to 0.4. Otherwise w=0.4+0.5u(0, 1). The new ve-
locity of each agent i are obtained according to Eq.(13).
Each element of the new velocity is truncated in [−Vmaxj ,
Vmaxj

]. The new position is obtained according to Eq.(14).
When xi is not near the candidate, the position is up-
dated by the seed-centered mutation according to Eqs.
(17) – (19) with probability Pm. If the position is out
of the search space, the position and the velocity is re-
paired.

6. Update of personal best: If the objective value of the new
position f(xt+1

i ) is better than that of the personal best
position f(x∗

i ), the personal best position is replaced
with the new position.

7. Update of the archive: The archive is updated by newly
generated positions.

8. Go back to 3.

Figure 3 show the algorithm of SPSO-G/βRNG. The
lines starting with ‘+’ show the modified lines from the orig-
inal PSO.

5 Numerical Experiments

5.1 Test Problems and performance evaluation

In this study, the benchmark problems for “CEC’2013 spe-
cial session and competition on niching methods for mul-

timodal function optimization” are optimized. Brief expla-
nation of 20 benchmark problems are shown in Table 1. The
problem number (Prob.), the function name with the number
of dimensions, the optimal value, the number of global op-
tima, and function description are described for each prob-
lem.

In order to evaluate the performance, the following mea-
sures are used [9]:

Peak ratio (PR): Given a maximum number of function
evaluations and an accuracy level, PR measures the aver-
age ratio of all known global optima found in all runs. If all
global optima are found in all runs, PR is 1.

PR =

∑NR
i=1 NPFi

NKP ∗NR
(20)

where NR is the number of runs, NPFi is the number of
global optima found in the end of i-th run, NKP is the num-
ber of known global optima. When the difference between
the best objective value found and the global optimal value
is less than or equal to the accuracy level, it is considered to
have found a global optimal solution. Five accuracy levels
1e-1, 1e-2, 1e-3, 1e-4 and 1e-5 are adopted.

5.2 Experimental Conditions

The 20 benchmark problems are optimized by SPSO-G/βRNG.
As for the graph, GG, RNG, βRNG with β ∈{1.25, 1.5,
1.75}, and βRNG with dynamic control of β are compared.
In the dynamic control, β is determined just before generat-
ing the graph and is changed from about 2 to 1 according to
the number of function evaluations FE as follows:

β = 2− FE

FEmax
(21)

where FEmax is the maximum number of function evalu-
ations. The maximum numbers of function evaluations are
specified for each function: 5.0e+04 in F1 to F5 (1D or 2D),
2.0e+05 in F6 to F11 (2D), and 4.0e+05 in F6 to F12 (3D or
higher).

The population sizes are specified for each problem: N=50
in problems 1, 2, 3, 4, 5 and 10, N=100 in problem 6, N=400
in problems 18, 19 and 20, N=750 in problem 7, N=1500 in
problem 9, and N=300 in the other problems. The archive
size NA=N . For each problem, 50 runs are performed.

5.3 Experimental Results

Tables 2 shows the experimental results. The first column
shows the problem number. The third column labeled ϵ shows
the accuracy level. The columns labeled GG, 1.25RNG,
1.5RNG, 1.75RNG, RNG and dynamic shows a PR value
for each accuracy level and the mean PR value for all accu-
racy levels over 50 runs in case of β ∈{1, 1.25, 1.5, 1.75,
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Initialize agents P={(xi, vi) | i = 1, 2, · · · , N};
x∗
i =xi, i=1, 2, · · · , N;

for(each dimension j) Vmaxj
=1

2
(uj − lj);

FE=N; // number of function evaluations
+ for(each xi in P) UpdateArchive(xi, A);
for(t=1; FE < FEmax; t++) {

+ Create βRNG using {x∗
i | i = 1, 2, · · · , N};

+ Cut long edges whose length is greater than d̄+ 1.281552σ;
+ Graph-based speciation using the βRNG to obtain seed(x∗

i );
for(each agent i in P) {

+ l=seed(x∗
i );

+ if(l == i || seed(x∗
l ) == l)

+ w=0.4, c1 = c2 = 2;
+ else if(u(0, 1)<Pm) { // mutation
+ mi=x∗

l + F (x∗
r2

− x∗
r3
)

+ (rk are randomly selected from {1, 2, · · · , N}\{i} s.t. r2 ̸= r3);
+ xi=binomial crossover between x∗

i and mi according to Eq.(18);
+ for(each dimension j) vij=u(0, 1)(x∗

ij − xij);
+ goto Eval;
+ }
+ else
+ w=0.4+0.5u(0, 1), c1 = c2 = 2;

for(each dimension j) {
vij=wvij+c1rand1ij(x∗

ij-xij)+c2rand2ij(x∗
lj-xij);

if(vij>Vmaxj
) vij=Vmaxj

;
else if(vij<−Vmaxj

) vij=−Vmaxj
;

xij=xij+vij;
}

+ Eval:
for(each dimension j)

if(xij<lj) xij=lj, vij=-1/2vij;
else if(xij>uj) xij=uj, vij=-1/2vij;

if(f(xi) > f(x∗
i )) x∗

i =xi;
+ UpdateArchive(xi, A);

FE=FE+1;
if(FE>=FEmax) break;

}
}

+ return A as the optimal solution candidates

UpdateArchive(x, A) {
if(|A|<NA) A=A ∪ {x};
else {

xnn=argminxa∈A ||xa − x||;
if(f(x) ≥ f(xnn)) xnn=x;

}
}

Fig. 3 Algorithm of SPSO-G/βRNG

2} and the dynamic control of β according to Eq. (21), re-
spectively. For reference, the results of NMMSO (Niching
Migratory Multi-Swarm Optimiser) [21] are also shown in
column labeled NMMSO. NMMSO is a very good PSO-
based multimodal optimization algorithm and ranked first in
the CEC competition on Niching Methods for Multimodal
Optimization in 2015 and 2017.

Best mean PR values among SPSO-G/βRNG including
GG and RNG are highlighted in bold. GG attained the best
mean PR values in four problems 4, 9, 14 and 15, 1.25RNG
attained the best mean PR values in three problems 4, 8 and

13, 1.5RNG attained the best mean PR values in three prob-
lems 4, 7 and 11, RNG attained the best mean PR values
in two problems 4 and 12, and the dynamic control attained
the best mean PR values in five problems 4, 17, 18, 19 and
20. 1.75RNG did not attain any best mean PR values. It is
thought that the dynamic control is effective to find optimal
solutions especially in high-dimensional problems such as
problems 18, 19 and 20. The dynamic control attained the
best mean PR value for all problems followed by 1.75RNG,
1.5RNG, RNG, 1.25RNG and GG as shown in the last row
labeld total in Table 3.
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Table 1 Benchmark functions

Prob. Function Optimal value #global optima Function description
1 F1 (1D) 200.0 2 Five-Uneven-Peak Trap
2 F2 (1D) 1.0 5 Equal Maxima
3 F3 (1D) 1.0 1 Uneven Decreasing Maxima
4 F4 (2D) 200.0 4 Himmelblau
5 F5 (2D) 1.03163 2 Six-Hump Camel Back
6 F6 (2D) 186.731 18 Shubert (2D)
7 F7 (2D) 1.0 36 Vincent (2D)
8 F6 (3D) 2709.0935 81 Shubert (3D)
9 F7 (3D) 1.0 216 Vincent (3D)
10 F8 (2D) -2.0 12 Modified Rastrigin - All Global Optima
11 F9 (2D) 0 6 Composition Function 1
12 F10 (2D) 0 8 Composition Function 2
13 F11 (2D) 0 6 Composition Function 3 (2D)
14 F11 (3D) 0 6 Composition Function 3 (3D)
15 F12 (3D) 0 8 Composition Function 4 (3D)
16 F11 (5D) 0 6 Composition Function 3 (5D)
17 F12 (5D) 0 8 Composition Function 4 (5D)
18 F11 (10D) 0 6 Composition Function 3 (10D)
19 F12 (10D) 0 8 Composition Function 4 (10D)
20 F12 (20D) 0 8 Composition Function 4 (20D)

NMMSO achieved 0.8221 as the mean PR value for all
accuracy levels and all problems. SPSO-G/βRNG with
1.25RNG, 1.5RNG, 1.75RNG, RNG and the dynamic con-
trol achieved 0.822225, 0.828012, 0.828531, 0.826015 and
0.833054 as the mean PR values, respectively, which are bet-
ter results than NMMSO.

Figure 4 show the change of the number of species over
the number of function evaluations in problems 9, 17, 18, 19
and 20 for GG, 1.25RNG, 1,5RNG, 1.75RNG, RNG and dy-
namic control of β. Problem 9 is 3D function but has many
number of optima over 200 and other problems are higher
dimensional problems with 5D, 10D or 20D functions. In
SPSO-G/βRNG, the number of species is same as the num-
ber of seeds. As the search converges, agents that are the
same or very close to each other will increase. When there
are multiple same agents with very good function values,
according to the speciation of this study, the agents have
the same adjacent agents. But since each adjacent agent has
only one seed, the agent with the lowest agent number be-
comes the seed of the adjacent agents. Other agents form
the species of only one agent by themselves. The number of
seeds increases by the number of the same agents. To avoid
this effect, the figure shows the average number of species
over 50 runs excluding the species of only one agent.

In the early stage, the number of species in RNG and dy-
namic control is large and the numbers are almost the same.
The number of species decreases in the order of 1.75RNG,
1.5RNG, 1.25RNG and GG. The number of species in GG is
considerably smaller than that of RNG. In the middle stage,
the number of species in dynamic control becomes smaller
than that in RNG, 1.75RNG and 1.5RNG. In the final stage,
the number of species in dynamic control becomes same

as that in GG for problem 9, approaches to that in GG for
problem 19, and becomes smaller than that in GG for prob-
lem 20. As for problems 17 and 18, when the search be-
gins to converge, the number of close agents increases, the
size of the species decreases and the number of species in-
creases. As the convergence progresses, the number of the
same agents increases and the number of species decreases
because the same agents is not counted as a species. It is
thought that the diversity tends to be lost earlier in the order
of GG, 1.25RNG and 1.5RNG than in RNG and dynamic
control.

In multimodal optimization problems, speciation into a
large number of species is desirable in order to find many
solutions in the early stage, and speciation into a relatively
small number of species is desirable in order to obtain highly
accurate solutions in the final stage. Especially for high-
dimensional problems, the number of species in the early
stage tends to be insufficient in GG, and that in the final
stage tends to be too large in RNG, but it is thought that the
dynamic control realized a proper number of species in both
stages.

6 Conclusions

In this study, βRNG was proposed for solving multimodal
problems and was adopted in PSO with graph-based specia-
tion. Four graphs GG, 1.5RNG, RNG and the dynamic con-
trol of the βRNG are compared by solving CEC2013 bench-
mark problems for multimodal optimization. It was shown
that the dynamic control of βRNG from RNG to GG is the
best graph for solving the benchmark problems. Especially,
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Table 2 Experimental results of problems 1–10

Function ϵ GG 1.25RNG 1.5RNG 1.75RNG RNG dynamic NMMSO
1 F1 1.0e-01 1 1 1 1 1 1 1

(1D) 1.0e-02 1 1 1 1 1 1 1
1.0e-03 1 1 1 1 1 1 1
1.0e-04 1 1 1 1 1 1 1
1.0e-05 1 1 1 1 1 1 1
mean 1 1 1 1 1 1 1

2 F2 1.0e-01 1 1 1 1 1 1 1
(1D) 1.0e-02 1 1 1 1 1 1 1

1.0e-03 1 1 1 1 1 1 1
1.0e-04 1 1 1 1 1 1 1
1.0e-05 1 1 1 1 1 1 1
mean 1 1 1 1 1 1 1

3 F3 1.0e-01 1 1 1 1 1 1 1
(1D) 1.0e-02 1 1 1 1 1 1 1

1.0e-03 1 1 1 1 1 1 1
1.0e-04 1 1 1 1 1 1 1
1.0e-05 1 1 1 1 1 1 1
mean 1 1 1 1 1 1 1

4 F4 1.0e-01 1 1 1 1 1 1 1
(2D) 1.0e-02 1 1 1 1 1 1 1

1.0e-03 1 1 1 0.995 1 1 1
1.0e-04 1 1 1 0.995 1 1 1
1.0e-05 1 1 1 0.995 1 1 1
mean 1 1 1 0.997 1 1 1

5 F5 1.0e-01 1 1 1 1 1 1 1
(2D) 1.0e-02 1 1 1 1 1 1 1

1.0e-03 1 1 1 1 1 1 1
1.0e-04 1 1 1 1 1 1 1
1.0e-05 1 1 1 1 1 1 1
mean 1 1 1 1 1 1 1

6 F6 1.0e-01 1 1 1 1 1 1 0.998
(2D) 1.0e-02 1 1 1 1 1 1 0.994

1.0e-03 1 1 1 1 1 1 0.992
1.0e-04 1 1 1 1 1 1 0.992
1.0e-05 1 1 1 1 1 1 0
mean 1 1 1 1 1 1 0.7952

7 F7 1.0e-01 1 1 1 1 1 1 1
(2D) 1.0e-02 0.991111 0.992222 0.993333 0.992222 0.991667 0.990556 1

1.0e-03 0.984444 0.986667 0.989444 0.987222 0.987222 0.981111 1
1.0e-04 0.976111 0.978889 0.98 0.98 0.979444 0.971667 1
1.0e-05 0.972778 0.972778 0.973333 0.972778 0.968889 0.961111 1
mean 0.984889 0.986111 0.987222 0.986444 0.985444 0.980889 1

8 F6 1.0e-01 0.999506 1 1 0.999506 0.999259 0.999753 0.954
(3D) 1.0e-02 0.999012 1 0.999506 0.999506 0.999259 0.999753 0.939

1.0e-03 0.998765 1 0.999259 0.999012 0.999259 0.999753 0.922
1.0e-04 0.997284 0.999506 0.998025 0.998272 0.998765 0.999259 0.899
1.0e-05 0.994568 0.998272 0.996543 0.996543 0.997778 0.998272 0.870
mean 0.997827 0.999556 0.998667 0.998568 0.998864 0.999358 0.9168

9 F7 1.0e-01 1 1 1 1 1 1 0.978
(3D) 1.0e-02 0.846111 0.841944 0.8425 0.846574 0.841481 0.844537 0.978

1.0e-03 0.807593 0.799722 0.798889 0.799815 0.795185 0.800278 0.978
1.0e-04 0.763333 0.755 0.753889 0.748519 0.748056 0.750648 0.978
1.0e-05 0.718519 0.705833 0.701481 0.695648 0.691852 0.696204 0.978
mean 0.827111 0.8205 0.819352 0.818111 0.815315 0.818333 0.978

10 F8 1.0e-01 1 1 1 1 1 1 1
(2D) 1.0e-02 1 1 1 1 1 1 1

1.0e-03 1 1 1 1 1 1 1
1.0e-04 1 1 1 1 1 1 1
1.0e-05 1 1 1 1 1 1 1
mean 1 1 1 1 1 1 1
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Table 3 Experimental results of problems 11–20

Function ϵ GG 1.25RNG 1.5RNG 1.75RNG RNG dynamic NMMSO
11 F9 (2D) 1.0e-01 1 0.996667 1 1 1 1 0.990

1.0e-02 0.996667 0.996667 1 0.996667 1 1 0.990
1.0e-03 0.993333 0.99 1 0.996667 0.996667 0.99 0.990
1.0e-04 0.986667 0.986667 1 0.986667 0.993333 0.99 0.990
1.0e-05 0.973333 0.983333 1 0.98 0.98 0.983333 0.990
mean 0.99 0.990667 1 0.992 0.994 0.992667 0.990

12 F10 (2D) 1.0e-01 0.985 0.9775 0.9825 0.98 0.9875 0.985 0.995
1.0e-02 0.9825 0.9775 0.98 0.98 0.9875 0.985 0.995
1.0e-03 0.9825 0.975 0.9775 0.9775 0.985 0.985 0.995
1.0e-04 0.9825 0.97 0.9725 0.9725 0.985 0.9825 0.993
1.0e-05 0.98 0.97 0.97 0.97 0.9775 0.9825 0.990
mean 0.9825 0.974 0.9765 0.976 0.9845 0.984 0.9936

13 F11 (2D) 1.0e-01 0.856667 0.86 0.86 0.856667 0.853333 0.863333 0.99
1.0e-02 0.843333 0.84 0.83 0.833333 0.826667 0.83 0.987
1.0e-03 0.8 0.813333 0.803333 0.793333 0.776667 0.8 0.983
1.0e-04 0.793333 0.793333 0.783333 0.79 0.763333 0.79 0.983
1.0e-05 0.776667 0.786667 0.776667 0.78 0.753333 0.786667 0.983
mean 0.814 0.818667 0.810667 0.810667 0.794667 0.814 0.9852

14 F11 (3D) 1.0e-01 0.71 0.696667 0.71 0.703333 0.7 0.7 0.770
1.0e-02 0.693333 0.68 0.69 0.69 0.69 0.693333 0.740
1.0e-03 0.683333 0.67 0.676667 0.676667 0.676667 0.686667 0.723
1.0e-04 0.683333 0.67 0.676667 0.676667 0.673333 0.68 0.720
1.0e-05 0.683333 0.67 0.67 0.67 0.673333 0.68 0.720
mean 0.690666 0.677333 0.684667 0.683333 0.682667 0.688 0.7346

15 F12 (3D) 1.0e-01 0.7225 0.72 0.715 0.7225 0.71 0.72 0.650
1.0e-02 0.72 0.7175 0.715 0.7175 0.705 0.715 0.647
1.0e-03 0.72 0.7125 0.715 0.715 0.7 0.715 0.642
1.0e-04 0.72 0.7125 0.715 0.715 0.7 0.7125 0.632
1.0e-05 0.72 0.71 0.7125 0.715 0.695 0.71 0.632
mean 0.7205 0.7145 0.7145 0.717 0.702 0.7145 0.6406

16 F11 (5D) 1.0e-01 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.660
1.0e-02 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.660
1.0e-03 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.660
1.0e-04 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.660
1.0e-05 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.660
mean 0.666667 0.666667 0.666667 0.666667 0.666667 0.666667 0.66

17 F12 (5D) 1.0e-01 0.5425 0.57 0.5575 0.5725 0.5525 0.5775 0.480
1.0e-02 0.5425 0.5675 0.5525 0.5675 0.5475 0.575 0.477
1.0e-03 0.535 0.5625 0.55 0.5625 0.5475 0.575 0.470
1.0e-04 0.535 0.5625 0.54 0.5625 0.5475 0.5725 0.468
1.0e-05 0.5325 0.5525 0.5375 0.555 0.5475 0.57 0.460
mean 0.5375 0.563 0.5475 0.564 0.5485 0.574 0.471

18 F11 (10D) 1.0e-01 0.536667 0.616667 0.626667 0.643333 0.646667 0.65 0.650
1.0e-02 0.53 0.616667 0.626667 0.643333 0.646667 0.65 0.650
1.0e-03 0.526667 0.616667 0.626667 0.64 0.646667 0.65 0.650
1.0e-04 0.523333 0.616667 0.626667 0.64 0.646667 0.646667 0.650
1.0e-05 0.52 0.613333 0.623333 0.64 0.646667 0.646667 0.650
mean 0.527333 0.616 0.626 0.641333 0.646667 0.648667 0.650

19 F12 (10D) 1.0e-01 0.3075 0.415 0.4825 0.475 0.48 0.5 0.460
1.0e-02 0.3025 0.4125 0.48 0.475 0.4775 0.5 0.460
1.0e-03 0.3025 0.4125 0.48 0.475 0.4775 0.495 0.457
1.0e-04 0.3025 0.41 0.48 0.4675 0.4675 0.4875 0.450
1.0e-05 0.3 0.4075 0.4575 0.4375 0.4075 0.4525 0.437
mean 0.303 0.4115 0.476 0.466 0.462 0.487 0.4528

20 F12 (20D) 1.0e-01 0.1175 0.2125 0.2575 0.27 0.2975 0.305 0.180
1.0e-02 0.1175 0.2075 0.2575 0.2675 0.2925 0.305 0.175
1.0e-03 0.115 0.205 0.2575 0.2675 0.275 0.3 0.172
1.0e-04 0.115 0.2025 0.25 0.255 0.21 0.29 0.172
1.0e-05 0.115 0.2025 0.24 0.2075 0.12 0.265 0.172
mean 0.116 0.206 0.2525 0.2535 0.239 0.293 0.1742

total mean 0.807900 0.822225 0.828012 0.828531 0.826015 0.833054 0.8221
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Fig. 4 Change of the number of species in problems 9(3D), 17(5D),
18(10D), 19(10D) and 20(20D)

the dynamic control is suitable for finding many and accu-
rate optima in higher dimensional problems.

PSO-G/βRNG cannot find enough optimal solutions in
composition functions (problems 13-20). In the initial stage,
SPSO-G can find many solutions, although the accuracy is
low. However, it is difficult to find good objective values
in a narrow peak, and search points in the narrow peak are
gradually absorbed by other species in a wider peaks.

In the future, we will devise a way to keep the species in
narrow peaks and find good solutions at the peaks and a way
to handle the same or very close agents. Also, we will apply
the proposed graph and method to other population-based
algorithms.
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