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Abstract—The performance of Differential Evolution (DE) is
affected by algorithm parameters, mutation strategies and so on.
One of the most successful studies on controlling the parameters
in DE is JADE (adaptive DE with optional external archive). In
this study, we propose a method to detect that the population
is converging or moving. The vectors from parent to child are
classified into inward vectors and outward vectors, and the rate
of the outward vectors is used to determine the search state. In
order to improve search efficiency of JADE, if the population
is converging, an algorithm parameter is adjusted to enhance
the convergence. If the population is moving, the parameter is
adjusted to enhance the movement. Also, the moving direction
of the population is determined by the averaged outward vectors
and the search in the direction is strengthened. The advantage
of JADE with the proposed method is shown by solving thirteen
benchmark problems.

Index Terms—evolutionary state estimation, outward vector
rate, moving direction, adaptive differential evolution, differential
evolution

I. INTRODUCTION

Optimization problems are very important and frequently
appear in the real world. There exist many studies on solving
optimization problems using population-based optimization
algorithms (POAs) [1] such as evolutionary algorithms (EAs)
[2] and particle swarm optimization (PSO) [3]. POAs search
for an optimum solution using a population with multiple
candidate solutions, and usually use stochastic operations to
generate new candidate solutions.

In this study, we focus on estimating the search state of
the population such as converging and moving. This kind of
estimation is called evolutionary state estimation in [4] and
optimization state estimation in [5]. The goal is to improve
search efficiency by dynamically updating the search mode
based on the estimated state. There are several states in the
process of searching for an optimal or near optimal solution
by POAs. In this study, we propose the following classification
of the states.

• Moving: If the population is far from the optimal solution,
the population moves toward the optimal solution.

• Examining: If the population is a little far from the
optimal solution or if the optimization problem has a

multimodal landscape, it is necessary to examine within
and around the population to determine a promising area
where the optimal solution exists. It is an intermediate
state between moving and converging.

• Converging: When the population reaches the promising
area, the population converges to find a highly accurate
solution.

In this study, we propose a simple method to detect that
the population is converging or moving. In order to detect the
state, it is necessary to estimate the direction in which the
population is heading. It is assumed that there is a one-to-one
correspondence between an original candidate solution and a
generated candidate solution. Differential Evolution (DE) [6],
[7] and PSO have such correspondence. In other algorithms
that do not have the correspondence, this method can be ap-
plied by devising a method for creating the correspondence. In
the following, the original candidate solution will be referred
to as the parent, and the generated candidate solution will
be referred to as the child. When the child is better than the
parent, the vector from the parent to the child is obtained. If the
vector approaches the center of gravity of the population, we
call it an inward vector, and if it moves away from the center
of gravity, we call it an outward vector. When the population
is converging, the population is assumed to converge in the
direction of the center of gravity, so the ratio of the inward
vectors becomes high. In contrast, when the population moves
toward the optimal solution that is far away from the center of
gravity, it is assumed that about half candidate solutions, which
are far from the optimal solution than the center of gravity,
approaches the center of gravity, and the rest are away from
the center of gravity. Figure 1 shows this situation.

Therefore, if the rate of outward vectors exceeds half, the
state is Moving, and if the ratio of outward vectors is low, the
state is Converging. As an index for the detection, we propose
the outward vector rate (OVR), which is the rate of outward
vectors among all vectors.

In this study, JADE (adaptive DE with optional external
archive) [8], one of DE algorithms with a one-to-one cor-
respondence between the parent and the child, is employed



optimal

solution

Converging

optimal

solution

Moving

center of 

gravity

center of 

gravity

Fig. 1. Inward and outward vectors in Converging and Moving states.

as the optimization algorithm to which the proposed method
is applied. The performance of DE is affected by algorithm
parameters and mutation strategies. One of the most successful
studies of adaptive DE that adjusts parameters adaptively is
JADE. The advantage of JADE with the proposed method is
shown by solving thirteen benchmark problems.

In Section 2, optimization problems, DE and JADE are
briefly explained. Related works are described in Section
3. In Section 4, OVR and JADE with OVR are proposed.
Conclusions are described in Section 5.

II. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values lj and uj are the lower bound and
the upper bound of xj , respectively.

B. Differential Evolution

DE is an evolutionary algorithm proposed by Storn and
Price [6], [7]. DE has been successfully applied to the op-
timization problems including non-linear, non-differentiable,
non-convex and multimodal functions. It has been shown that
DE is fast and robust to these functions [9].

A typical DE algorithm called DE/rand/1/bin is as follows:
1) An initial population P = {xi, i = 1, 2, · · · , N} is

generated randomly in search space, where N is the
population size and P is the population.

2) If a predefined condition is satisfied, the algorithm is
terminated.

3) Each individual xi is selected as a parent. A mutant
vector mi is generated as follows:

mi = xr1 + F (xr2 − xr3) (2)

where three numbers r1, r2 and r3 are chosen randomly
from {1, 2, · · · , N} without overlapping i and each other.
F is a scaling factor and xr1 is called as the base vector.
A trial vector (child) vi is generated from xi and mi

using the binomial crossover as follows:

vij =

{
mij if j = jrand or u(0, 1) < CR
xij otherwise

(3)

where jrand is a randomly selected integer in [1, D] and
u(0, 1) is a uniform random number in [0, 1]. CR is a
crossover rate. If the child is better than the parent, the
child survives. Otherwise the parent survives. Go back to
3) until all individual are selected as parents.

4) The population P is replaced by the survivors. Go back
to 2).

C. JADE

In JADE, the mean value of the scaling factor µF and the
mean value of the crossover rate µCR are learned to define
two probability density functions (PDFs), where initial values
are µF =µCR=0.5. The scaling factor Fi and the crossover
rate CRi for each individual xi are independently generated
according to the two PDFs as follows:

Fi ∼ C(µF , σF ) (4)
CRi ∼ N(µCR, σ

2
CR) (5)

where Fi is a random variable according to a Cauchy distri-
bution C(µF , σF ) with a location parameter µF and a scale
parameter σF =0.1. CRi is a random variable according to
a normal distribution N(µCR, σ

2
CR) of a mean µCR and a

standard deviation σCR=0.1. CRi is truncated to [0, 1] and Fi

is truncated to be 1 if Fi > 1 or regenerated if Fi ≤ 0. The
location µF and the mean µCR are updated as follows:

µF = (1− c)µF + cSF 2/SF (6)
µCR = (1− c)µCR + cSCR/SN (7)

where SN is the number of success cases, SF , SF 2 and SCR

are the sum of F , F 2 and CR in success cases, respectively. A
constant c is a weight of update in (0,1] and the recommended
value is 0.1.

JADE adopts a strategy called “current-to-pbest“ as follows:
A mutation vector is generated as follows:

mi = xi + Fi(xpbest − xi) + Fi(xr2 − x̃r3) (8)

where xpbest is a randomly selected individual from the top
100p% individuals. x̃r3 is selected randomly from the current
population in case of “without an archive”, and is selected
randomly from the union of the current population and an
archive in case of “with an archive”. In many cases, JADE
with an archive which has same archive size as the population
size is used. The archive is initialized to be empty. Defeated
parents by the children are added to the archive. If the number
of archived individuals exceeds the archive size, randomly
selected individuals are removed to keep the archive size.

In order to satisfy bound constraints, a child that is outside
of the search space is moved into the inside of the search
space. In JADE, each outside element of the child is set to
be the middle between the corresponding boundary and the
element of the parent as follows:

vij =

{
1
2
(lj + xij) if vij < lj

1
2
(uj + xij) if vij > uj

(9)

This operation is applied after a child is generated by JADE
operations.



III. RELATED WORKS

A. Studies on Algorithm Parameters

The performance of DE is affected by algorithm parameters
such as F , CR and N , and by mutation strategies. The
methods of controlling algorithm parameters can be classified
into some categories as follows:

1) selection-based control: Strategies and parameter values
are selected regardless of current search state such as
CoDE [10].

2) observation-based control: The current search state is
observed, proper parameter values are inferred according
to the observation, and parameters and/or strategies are
dynamically controlled such as FADE [11], DESFC [12],
and LMDE [13], [14].

3) success-based control: It is recognized as a success case
when a better search point than the parent is generated.
The parameters and/or strategies are adjusted so that the
values in the success cases are frequently used such as
SaDE [15], JADE [8], SHADE [16], CADE [17] and
jSO [18]. The self-adaptation, where parameters are
contained in individuals and are evolved by applying
evolutionary operators to the parameters, is included in
this category such as DESAP [19] and jDE [20].

4) hybrid control: Plural control methods in different cat-
egories are combined to adjust algorithm parameters
such as ADEGL [21] and JADEadm [22]. Our proposed
method is included in this category.

B. Studies on Evolutionary State Estimation

Evolutionary state estimation (ESE) is strongly related to the
balance control between exploitation and exploration that has
been studied for a long time [23]. In the control, the population
diversity is observed. When the diversity is large like in case
of the initial population, the search mode is set to exploitation
and the vicinity of promising solutions are searched. When the
population diversity is small, the mode is set to exploration and
a new area is searched. For example, in [24], the normalized
distance from the center of gravity of the population is adopted
as the diversity measure. If the measure exceeds the threshold
dhigh, the search mode is set to exploitation and selection and
a crossover operation are performed. If the measure is less
than the threshold dlow, the mode is set to exploration and a
mutation operation is performed.

Various measures have been proposed as diversity measures.
The distance-based diversity measures are as follows [25],
where ||x − y|| is the distance between the two vectors x
and y, and the Euclidean distance is often used.

• Diameter: Maximum distance in the population
maxi̸=j∈[1,N ] ||xi − xj ||.

• Radius: Maximum distance from the center of gravity of
the population maxi ̸=j∈[1,N ] ||xi − g||, g = 1

N

∑N
i=1 xi.

• Normalized average distance: Average distance from the
center of gravity of the population normalized by the size

of the search space 1
LN

∑N
i=1 ||xi − g||. L is the size of

the search space L = ||u− l||.

However, even if normalized, the threshold is affected by the
population size and so on. The issue is that it is difficult to
select proper thresholds.

ESE does not aim to observe diversity, but to estimate the
search state of the population. In [4], the state is classified
into four states: Convergence, Exploitation, Exploration, and
Jumping-out. The positional relationship between the best
individual and other individuals is used for the classification.
Assuming that the best individual is closest to other individuals
when the population is converging, and the best individual is
farthest from other individuals when the population is moving,
and the following measure is proposed.

di =
1

N − 1

N∑
j=1,j ̸=i

||xi − xj || (10)

DBR =
dbest − dmin

dmax − dmin
(11)

where di is the average distance between xi and other individ-
uals, dbest is the average distance between the best individual
and other individuals, dmin is the minimum value of di and
dmax is the maximum value of di. If DBR is close to 0, the
state is classified as Convergence, and if DBR is close to 1,
the state is classified as Jumping-out. The time complexity
is O(N2D) because the distances between all individuals
are calculated. Since N is usually set to a multiple of D,
O(N2D) = O(N3). It is thought that an measure with a small
computational complexity is necessary.

In [5], the following measure IOS (Indicator of the Op-
timization State) is proposed to probabilistically classify the
search state into two states: Exploitation and Exploration based
on the distances to the best individual and the function values.

IOS =

N∑
i=1

||fi − di|| (12)

IOS =
IOS − IOSmin

IOSmax − IOSmin
(13)

where di is the rank of the distance between the individual
xi and the best individual, and the closer the distance, the
smaller the rank. fi is the rank of the function value, and
the better the value, the smaller the rank. IOSmin is the
minimum value of IOS when the ranks of the distance and
the function value are the same (IOS=0). IOSmax is the
maximum value of IOS when the ranks of the distance and
the function value are opposite (fi + di = N + 1). The state
is classified as Exploration with the probability of IOS and
as Exploitation with the probability of 1 − IOS. If the best
individual is near the optimal solution and the function value
becomes worse as the distance increases, IOS becomes small.
If the population is far from the optimal solution and the best
individual is moving to the optimal solution as the leader, and
if the function value becomes worse as the distance increases,



IOS becomes small, too. It is thought that it is difficult to
classify Convergence and Jumping-out.

In this study, we focus on the vectors from parent to child
and the state is classified using the outward vector rate.

IV. PROPOSED METHOD

A. Outward Vector Rate

The outward vector rate (OVR) is defined by the rate of
outward vectors. If the movement vector from a parent to the
child is in the direction closer to the center of gravity of the
population, it is classified as an inward vector, and if it is
farther away, it is classified as an outward vector. The process
of calculating OVR is as follows:

1) Obtain the center of gravity g of the population. Set the
counters nin and nout of the inward and outward vectors
to 0.

2) For each parent xi and the child vi, if the child is not
better than the parent, go to 5).

3) Obtain the distances between xi (vi) and the center of
gravity as dxg (dvg). The movement vector is given by
vi − xi.

4) If dvg < dxg , the movement vector is an inward vector
and nin is incremented by 1. If dvg > dxg , the movement
vector is an outward vector and nout is incremented by
1.

5) Go back to 2) until all individuals have been processed.
6) Obtain OV R using the following equation:

OV R =
nout

nin + nout
(14)

To avoid abrupt changes in OV R, the exponentially smoothed
moving average with the smoothing constant 0.5 is used. The
time complexity is O(ND) = O(N2) because the distance
between each individual and the center of gravity is calculated
and N is usually determined in proportion to D.

B. Evolutionary State Estimation and Parameter Control

Based on OV R, the search state is classified into Con-
verging, Examining and Moving. This corresponds to Conver-
gence, Exploitation/Exploration and Jumping-out, respectively.
In preliminary experiments, we optimized the benchmark
functions and observed changes in OV R. It was found that
Converging and Moving were relatively easy to determine, but
Exploitation and Exploration were difficult. Therefore, in this
study, parameter control is applied in Converging and Moving
states, and the original control of JADE is applied in other
states. The relationship between OV R values and the states
and parameter control are as follows:

• OV R ∈ [0,0.1): The state is judged as “strongly Converg-
ing”, and the value of Fi is multiplied by 0.9 to speed
up the convergence.

• OV R ∈ [0.1,0.2): The state is judged as “weakly Con-
verging”, and the value of Fi is multiplied by 0.975 to
slightly speed up the convergence.

• OV R ∈ [0.4,0.5): The state is judged as “weakly Mov-
ing”, The value of Fi is not modified, but the movement

is accelerated using the averaged outward vectors, which
will be explained later.

• OV R ∈ [0.5,0.6): The state is judged as “Moving”,
and the value of Fi is multiplied by 1.025 to keep the
population diversity and slightly accelerate the moving
speed.

• OV R ∈ [0.6,1]: The state is judged as “strongly Mov-
ing”, and the value of Fi is multiplied by 1.1 to strengthen
the diversity and accelerate the moving speed.

Since the value of OV R is not determined in the first gener-
ation, this control is applied after the first generation.

C. Acceleration of Movement

When the search state is Moving, there is a risk that the
population will move very slowly and the efficiency of the
search becomes very low, or that the population will lose
diversity and fall into a local optimal solution. To avoid this,
the speed of movement to promising area is accelerated by
adding a movement vector in the direction of the average of
the outward vectors to the child. Let M be the average of the
outward vectors and the child is updated as follows:

M =

∑N
i=1{vi − xi which is an outward vector}

nout
(15)

vi = vi + αM (16)

The acceleration coefficient α is 0.2 for “strongly Moving”,
0.1 for “Moving”, and 0.05 for “weakly Moving”. In order
to avoid abrupt changes in M , the exponentially smoothed
moving average with the smoothing constant 0.5 is used.

D. Algorithm

The algorithm of the proposed method JADEovr (improved
JADE using OVR) can be described as follows:

Step0 Parameter setup. The size of the archive NA is N .
Step1 Initialization of the individuals. P = {xi|i =

1, 2, · · · , N} are generated randomly in the search
space and form an initial population. The archive A
is made empty. Initial values OV R=0 and M = 0.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uations FEmax, the algorithm is terminated.

Step3 Initialization for each generation. The list of success
cases S is made empty. The counters are initialized
as nin = nout = 0. The sum of the outward vectors
is initialized as Mout = 0.

Step4 JADE operation using OV R. For each individual
xi, Fi is generated according to Eq.(4) and CRi is
generated according to Eq.(5). According to OV R
Fi is modified after the first generation. xpbest is
selected randomly from top p% individuals. xr2 is
selected randomly excluding xi. xr3 are randomly
selected from the union of P and A excluding xi

and xr1. JADE operation is executed and a child
is generated. According to OV R, the acceleration
coefficient α is determined and the child is modified
using Eq.(16) after the first generation.



Step5 Survivor selection. If the child is better than the
parent, or in a success case, the child becomes a
survivor. The successful combination of parameter
values (Fi, CRi) is added to S. Defeated parent is
added to A. Otherwise, the parent xi becomes a
survivor.

Step6 Determining inward or outward. If the child is better
than the parent, the distances between xi (vi) and
the center of gravity is obtained as dxg (dvg). If the
vector vi−xi is a inward vector, nin is incremented
by 1. If the vector is an outward vector, nout is
incremented by 1 and the vector is added to Mout.
Go back to Step 4 until all individuals are processed.

Step7 Resizing the archive. If the size of the archive
exceeds NA, randomly selected elements in A are
deleted until the size of A becomes NA.

Step8 Learning parameters. The means of the scaling factor
µF and the means of crossover rate µCR are updated
using S according to Eqs. (6) and (7).

Step9 Updating OV R and M . In the first generation, OV R
and M are determined according to Eq.(14) (using
Mout) and Eq.(15), respectively. The exponentially
smoothed moving average with the smoothing con-
stant 0.5 is used to update OV R and M after the
first generation. Go back to Step2.

Figure 2 shows the pseudo-code of JADEovr. Lines starting
with ‘+’ shows the modified lines from original JADE.

V. NUMERICAL EXPERIMENTS

In this paper, well-known thirteen benchmark problems are
solved.

A. Test Problems
The 13 scalable benchmark functions [8] are solved. Every

function has an optimal objective value 0. Functions f1
to f4 are continuous unimodal functions. The function f5
is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases. The function f6 is a discontinuous step function, and f7
is a noisy quartic function. Functions f8 to f13 are multimodal
functions and the number of their local minima increases
exponentially with the problem dimension.

Experimental conditions are same as JADE as follows:
Population size N = 100, initial mean for scaling factor µF

= 0.5 and initial mean for crossover rate µCR = 0.5, the pbest
parameter p = 0.05, and the learning parameter c = 0.1. The
archive size NA is same as N .

Independent 50 runs are performed for 13 problems. The
number of dimensions for the problems is 30 (D = 30). Each
run stops when the number of function evaluations exceeds the
maximum number of evaluations FEmax. In each function,
different FEmax is adopted.

B. Experimental Results
Table I show the experimental results on JADE, JADE+F

(JADE with control of Fi only), JADE+M (JADE with ac-
celeration of movement only) and JADEovr. The mean value,

JADEovr()

{
µF =µCR=0.5; σF =σCR=0.1; NA=N; // archive size

// Initialize a population

P=N individuals generated randomly in the search space;

FE=N;

A=∅;
+ OV R=0; M=0; // moving average of outward vectors

for(t=1; FE < FEmax; t++) {
S=∅; // make the list of success cases empty

+ nin=nout=0; Mout=0; // sum of outward vectors

+ g=center of gravity of P;

for(i=1; i ≤ N; i++) {
// JADE operations for each individual

CRi = µCR + N(0, σ2
CR);

truncate CRi to [0, 1];

do {
Fi=µF + C(0, σF );

} while(Fi ≤ 0);

if(Fi > 1) Fi = 1;

+ if(t>1) modify Fi according to OV R;

xpbest=randomly selected from top 100p% in P;

xr2=randomly selected from P (r2 ̸= i);

xr3=randomly selected from P ∪ A (r3 ̸∈ {i, r2});
mi=xi+Fi(xpbest − xi)+Fi(xr2 − xr3);

vi=generated from xi and mi by binomial crossover;

+ if(t>1) {
+ set α according to OV R;

+ vi+=αM; // enhance movement

+ }
FE=FE+1;

// Survivor selection

if(f(vi) < f(xi)) {
zi=vi;

S=S ∪ {(Fi, CRi)}; // add a success case

A=A ∪ {xi};
+ dxg=||xi − g||; dvg=||vi − g||;
+ if(dvg<dxg) nin++;

+ else if(dvg>dxg) {
+ nout++; Mout+=vi-xi;

+ }
}
else

zi = xi;

}
P = {zi}
while(|A|>NA) // resize the archive

remove a randomly selected element from A;

// Learning parameters

if(|S| > 0) {
µF = (1 − c)µF + c

∑
Fi∈S F 2

i /
∑

Fi∈S Fi;

µCR = (1 − c)µCR + c
∑

CRi∈S CRi/|S|;
}

+ if(nin+nout>0) {
+ if(t==1) {
+ OV R=nout/(nin + nout); if(nout>0) M=Mout/nout;

+ } else {
+ OV R=0.5OV R+0.5nout/(nin + nout);

+ if(nout>0) M=0.5M+0.5Mout/nout;

+ }
+ }

}
}

Fig. 2. The pseudo-code of the proposed method JADEovr



the standard deviation, and the median value of best objective
values in 50 runs are shown for each function. The median
value is shown under the mean value. The maximum number
of function evaluations is selected for each function and
is shown in column labeled FEmax. Since the variability
of each trial is not small and the reliability of the mean
value is not high, the best median value among algorithms
is highlighted. Also, Wilcoxon signed rank test is performed
and the result for each function is shown on the right side
of the median value in parentheses. Symbols ‘+’, ‘−’ and
‘=’ are shown when each algorithm is significantly better
than JADE, is significantly worse than JADE, and is not
significantly different from JADE, respectively. Symbols ‘++’
and ‘−−’ show that the significance level is 1% and ‘+’ and
‘−’ show that the significance level is 5%. Also, ‘==’ show
that completely same results are obtained because M is not
used for optimization by JADE+M in some problems.

From Table I, JADEovr attained the best median results in
8 functions f1, f4, f6, f8 and f10–f13 out of 13 functions.
JADE+F attained the best median results in 8 functions f1,
f2, f6 and f9–f13. JADE+M attained the best median results
in 3 functions f3, f5 and f7. JADE attained no best median
result.

JADEovr attained significantly better results than JADE
in 12 functions except for f7 and attained no significantly
worse result than JADE. The JADE+F attained significantly
better results than JADE in 9 functions except for f3–f5 and
f7, and attained no significantly worse result. The JADE+M
attained significantly better results than JADE in 3 functions
and significantly worse result in f9. It is thought that the
parameter control of Fi is very effective to many functions
and the movement acceleration is effective to the functions
f3–f5. Therefore, the combination of the parameter control of
Fi and the movement acceleration according to OV R is very
effective and can improve the performance of JADE.

Figure 3 shows the change of OV R over the number of
function evaluations for JAVEovr and the change of µF for
JADEovr and JADE in the unimodal function f1, the function
with ridge structure f5, the unimodal function with noise
f7, the multimodal function f8, and the strongly multimodal
function f9.

As for the unimodal function f1, the proper state would be
always Converging because uniformly distributed individuals
in the search space approach to the center of the search space.
In the figure, OV R is very small and less than 0.1 (strongly
Converging) in very early generations, and then is in the
rage of [0.1,0.2] (weakly Converging). The values of µF in
JADEovr are always smaller than those in JADE. It is thought
that OV R can detect the proper state and µF is modified to
smaller values to speed up the convergence.

As for the function with ridge structure f5, usually the
population approaches the origin first and passes through a
narrow ridge to reach the optimal solution and the proper state
would be Converging and then Moving. OV R is small and less
than 0.2 (strongly Converging to weakly Converging) in early
generations, is increasing and beyond 0.2 (Examining), and is
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TABLE I
EXPERIMENTAL RESULTS ON 13 FUNCTIONS

Func FEmax JADE JADE+F JADE+M JADEovr
f1 150,000 6.50e-58± 4.5e-57 3.67e-73± 1.5e-72 6.50e-58± 4.5e-57 3.67e-73± 1.5e-72

1.13e-63 2.29e-75 (++) 1.13e-63 (==) 2.29e-75 (++)
f2 200,000 2.21e-24± 1.2e-23 1.72e-43± 8.2e-43 2.26e-24± 1.2e-23 1.72e-43± 8.2e-43

6.73e-33 5.47e-48 (++) 6.73e-33 (=) 7.02e-48 (++)
f3 500,000 2.29e-83± 1.1e-82 2.51e-82± 9.8e-82 2.59e-85± 1.5e-84 9.16e-85± 3.9e-84

7.25e-86 2.47e-85 (=) 1.08e-88 (++) 8.83e-88 (++)
f4 500,000 1.58e-62± 4.3e-62 1.32e-62± 5.8e-62 1.16e-63± 5.8e-63 3.14e-64± 9.7e-64

1.15e-63 4.24e-64 (=) 3.99e-65 (++) 1.95e-65 (++)
f5 150,000 2.39e-01± 9.5e-01 2.39e-01± 9.5e-01 1.59e-01± 7.8e-01 2.39e-01± 9.5e-01

1.82e-19 5.15e-20 (=) 1.37e-21 (++) 3.26e-21 (++)
f6 10,000 4.92e+00± 1.4e+00 2.60e-01± 5.2e-01 4.92e+00± 1.4e+00 2.60e-01± 5.2e-01

5.00e+00 0.00e+00 (++) 5.00e+00 (==) 0.00e+00 (++)
f7 300,000 6.24e-04± 2.5e-04 6.13e-04± 2.2e-04 5.59e-04± 2.2e-04 5.78e-04± 2.1e-04

5.65e-04 5.98e-04 (=) 5.17e-04 (=) 5.79e-04 (=)
f8 100,000 7.11e+00± 2.8e+01 2.37e+00± 1.7e+01 4.74e+00± 2.3e+01 2.37e+00± 1.7e+01

3.70e-05 4.10e-08 (++) 3.78e-05 (=) 3.19e-08 (++)
f9 100,000 1.34e-04± 7.2e-05 2.35e-05± 2.2e-05 1.54e-04± 7.7e-05 3.53e-05± 3.1e-05

1.18e-04 1.81e-05 (++) 1.44e-04 (−) 2.83e-05 (++)
f10 50,000 2.87e-09± 4.8e-09 3.02e-11± 1.8e-11 2.87e-09± 4.8e-09 3.02e-11± 1.8e-11

1.88e-09 2.96e-11 (++) 1.88e-09 (==) 2.96e-11 (++)
f11 50,000 1.71e-07± 1.2e-06 5.45e-04± 2.2e-03 1.71e-07± 1.2e-06 5.45e-04± 2.2e-03

4.68e-12 3.52e-14 (+) 4.68e-12 (=) 3.52e-14 (+)
f12 50,000 3.20e-16± 1.1e-15 5.63e-20± 2.4e-19 3.20e-16± 1.1e-15 5.63e-20± 2.4e-19

1.43e-17 9.41e-21 (++) 1.43e-17 (==) 9.41e-21 (++)
f13 50,000 7.98e-16± 1.4e-15 1.91e-19± 4.4e-19 7.98e-16± 1.4e-15 1.91e-19± 4.4e-19

3.03e-16 4.45e-20 (++) 3.03e-16 (==) 4.45e-20 (++)
+ — 9 3 12
= — 4 9 1
− — 0 1 0

almost in the rage of [0.4,0.6] (between weakly Moving and
strongly Moving). The values of µF in JADEovr are always
greater than those in JADE except for early generations. It
is thought that OV R can detect the state change and µF is
modified to greater values to keep diversity and strengthen the
movement.

As for the unimodal but noisy function f7, the proper state is
always Converging because uniformly distributed individuals
approach to the center of the search space as well as in f1.
OV R is almost in the range of [0.1,0.2] (weakly Converging)
but sometimes beyond 0.2 (Examining). The values of µF

in JADEovr are always smaller than those in JADE. It is
thought that OV R can often detect the proper state and µF is
modified to smaller values to speed up the convergence. But
the control of µF is not enough to outperform the control of
JADE because Examining state is sometimes detected due to
the noise.

As for the multimodal function having the optimal solution
near the boundary of search space f8, the proper state is
Moving then Converging, because the population moves to
near the boundary and then converges to the optimal solution.
OV R is very large and greater than 0.4 (strongly Moving
to weakly Moving) except for very early generations, and is
decreasing to less than 0.4 (Examining) and to less then 0.2
(Converging). The values of µF in JADEovr are greater than
those in JADE in the first half generations and are less than
those in JADE in the second half of generations. It is thought
that OV R can detect the state change and µF is modified to
greater values to keep diversity and strengthen the movement

first and then is modified to smaller values to speed up the
convergence.

As for the strongly multimodal function f9, the proper state
would be Examining then Converging, because the population
examines various near optimal solutions and converges to
the optimal solution after the population reaches a valley
including the optimal solution. OV R is increasing from 0.15
(Converging to Examining), is beyond 0.4 (Moving), and is
decreasing to less than 0.2 (Examining to Converging). The
values of µF in JADEovr are almost same as those in JADE
and are smaller than those in JADE in later generations. It is
thought that OV R can detect the state change from Examining
to Converging but sometimes detects Moving incorrectly. The
reason why JADEovr outperformed JADE is that after the
population reaches the valley including the optimal solution,
it converges to the optimal solution more rapidly than JADE
due to detection of Converging state.

It is thought that OV R can detect Converging and Moving
states and the scaling factor is controlled almost correctly.

VI. CONCLUSIONS

In this study, the method of detecting Converging and
Moving states using the outward vector rate is proposed.
Also, a dynamic modification of the scaling factor and the
acceleration of movement are also proposed to improve the
performance of JADE. The proposed method was applied to
the optimization of various 13 functions including unimodal
functions, ridge functions and multimodal functions. It was
shown that the outward vector rate can classify the search state



correctly, the modification of the scaling factor can speed up
the convergence or enhance the movement, and the movement
acceleration can improve the performance in Moving state.
Also, it was shown that the proposed method JADEovr was
very efficient compared with JADE.

In the future, we will investigate the threshold values for
OV R to classify the search state and the algorithm parameter
α to enhance the movement in detail. Also, we will introduce
the ε constrained method into JADEovr to solve constrained
optimization problems. Although optimization was successful
with the multimodal functions used in this study, Fig. 1
assumes nearly unimodal functions. In strongly multimodal
functions, each individual may move toward a different local
optimum, so it is necessary to improve OV R to be robust
to such functions. The change of the function values was
confirmed, but the behavior of the population has not been
sufficiently analyzed, so it is necessary to perform a detailed
analysis.
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