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Abstract

The performance of differential evolution (DE) is in-
fluenced by various factors such as algorithm parame-
ters and mutation strategies. JADE (adaptive DE with
optional external archive) is recognized as one of the
most successful studies on parameter control in DE. In
this study, in order to improve the search efficiency of
JADE, we propose to integrate two methods we have
proposed. One is the method to estimate whether the
population of candidate solutions is converging or mov-
ing for particle swarm optimization. The normalized
distance between the population center and the best
solution is used for the estimation. When the popula-
tion is converging, the search mode is adjusted to en-
hance the convergence. When the population is moving,
the search mode is adjusted to enhance the movement.
The other is the method to control DE parameters for
extreme individuals in order to improve the search ef-
ficiency. The methods are modified to use the former
method in JADE and to reduce the interference be-
tween the two methods. The effectiveness of JADE in-
corporating the proposed methods is shown by solving
thirteen benchmark problems.

1 Introduction

Optimization problems are very important and fre-
quently appear in the real world. Many studies have
been conducted for solving optimization problems us-
ing population-based optimization algorithms (POAs)
[1] such as evolutionary algorithms (EAs) [2], differen-
tial evolution (DE) [3], and particle swarm optimization
(PSO) [4]. POAs explore for an optimal solution by
employing a population comprising multiple candidate
solutions. Typically, they utilize stochastic operations
to generate new candidate solutions.
The effectiveness of DE is influenced by various fac-

tors such as algorithm parameters and mutation strate-
gies. JADE (adaptive DE with optional external
archive) [5] is recognized as one of the most success-
ful studies in parameter control for DE. In this study,

to enhance the search efficiency of JADE, we propose
to improve parameter control in JADE by integrating
two methods that we have proposed as follows:

• A search state estimation method have proposed
for PSO [6] to estimate whether the population
is converging or moving. The search state is de-
termined by the distance between the population
center and the best solution normalized to the in-
terval [0,1]. If the best solution is closest to the
center, the normalized distance is 0, and if the
best solution is farthest from the center, the dis-
tance is 1. If the normalized distance is small, the
population is judged to be converging, and if it is
large, the population is judged to be moving. Fig.
1 shows this situation.
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Fig. 1: The position of the best solution relative to the
population center in converging and moving states.

• The extreme individuals method have proposed
for JADE [7]. In the extreme individuals method,
the parameter values generated by JADE are
modified to accelerate the convergence of good
individuals and realize global search by bad indi-
viduals.

In the search state estimation method, estimation
thresholds are modified to work well in JADE. When
the population is converging, a parameter called scal-
ing factor is adjusted to enhance the convergence.
When the population is moving, the parameter is ad-
justed to enhance the movement. The extreme indi-
vidual method is simplified to reduce the interference
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of the two methods where the parameters are modified
only for the best individual and the worst individual.
The advantage of JADE with the proposed method is
demonstrated by solving thirteen benchmark problems.
Optimization problems and JADE are explained in

Section 2. In Section 3, related works including param-
eter control and search state estimation are briefly re-
viewed. JADE with the search state estimation method
and the extreme individual method is proposed in Sec-
tion 4. In Section 5, experimental results on some prob-
lems are shown. Finally, conclusions are described in
Section 6.

2 Optimization by Differential
Evolution

2.1 Optimization Problems
This study will address the optimization problem

with lower and upper bound constraints as described
below.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector
and f(x) is an objective function. Values lj and uj are
the lower bound and the upper bound of the variable
xj , respectively. The search space, where each point
satisfies the lower and upper bound constraints, is de-
noted by S.

2.2 Differential Evolution
DE, which is proposed by Storn and Price [3], is one of

evolutionary algorithms. DE has been shown to be very
effective in optimizing various types of functions. These
include non-linear, non-differentiable, non-convex and
multimodal functions. It has been shown that DE is
fast and robust to these functions [8].
A typical DE algorithm called DE/rand/1/bin is as

follows:

1) An initial population P = {xi, i = 1, 2, · · · , N} is
generated randomly in the search space, where N
is the population size and P denotes the popula-
tion.

2) The algorithm is terminated when a predefined
condition is satisfied.

3) Each individual xi is selected as a parent. A
mutant vector mi is generated as follows:

mi = xr1 + F (xr2 − xr3) (2)

where three integers r1, r2 and r3 are chosen ran-
domly in [1, N ] without overlapping i and each
other. F stands for a scaling factor. A trial vec-
tor (child) vi is generated from xi and mi using

the binomial crossover as follows:

vij =

{
mij if j = jrand or u(0, 1) < CR
xij otherwise

(3)
where jrand is a randomly selected integer in
[1, D] and u(0, 1) is a uniformly distributed ran-
dom number in [0, 1]. CR stands for a crossover
rate. If the child outperforms the parent, the child
survives. Otherwise the parent survives. Return
to 3) until all individuals are selected as parents.

4) P is replaced by the survivors. Return to step 2).

2.3 JADE
In JADE, the mean values µF and µCR for the scaling

factor and the crossover rate are adaptively learned, re-
spectively. Initially, µF=µCR=0.5. The scaling factor
Fi and the crossover rate CRi for each individual xi are
independently generated according to the mean values
as follows:

Fi ∼ C(µF , σF ) (4)

CRi ∼ N(µCR, σ
2
CR) (5)

where Fi is generated according to a Cauchy distribu-
tion with location µF and scale σF=0.1. Fi is truncated
to be 1 if Fi is greater than 1 and is regenerated if Fi

is zero or negative. CRi is generated according to a
normal distribution with mean µCR and standard de-
viation σCR=0.1. CRi is truncated to [0, 1]. The mean
values are updated using parameter values in success
cases, when a better child than the parent is generated,
as follows:

µF = (1− c)µF + cSF 2/SF (6)

µCR = (1− c)µCR + cSCR/SN (7)

where SN is the number of success cases, SF , SF 2 and
SCR are the sum of F , F 2 and CR in success cases,
respectively. A constant c serves as a weight of update
in (0,1] and the recommended value is 0.1.
JADE adopts a strategy called “current-to-pbest“.

When an external archive is adopted, a mutant vec-
tor is generated by current-to-pbest with an archive as
follows:

mi = xi + Fi(xpbest − xi) + Fi(xr2 − x̃r3) (8)

where xpbest is selected randomly from the top 100p%
individuals, r2 is a randomly selected integer in [1, N ]
excluding i, and x̃r3 is selected randomly from the
union of the current population and the archive so that
r3 ̸∈ {i, r2}. In many cases, the archive size NA is
same as N . The archive is initially empty. Parents
defeated by the children are then added to the archive.
If the number of individuals in the archive exceeds the
archive size, randomly selected individuals are removed
to maintain the archive size.
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To satisfy the bound constraints, a child that falls
outside the search space S is relocated inside S. In
JADE, each out-of-bounds element of the child is ad-
justed to be the midpoint between the corresponding
boundary and the corresponding element of the parent,
as follows:

vij =

{
1
2 (lj + xij) if vij < lj
1
2 (uj + xij) if vij > uj

(9)

This operation is applied after a child is generated
through JADE operations.

3 Related Works

3.1 Studies on Algorithm Parameters
The performance of DE is influenced by algorithm

parameters such as F , CR, and N , as well as mutation
strategies. Methods for controlling algorithm parame-
ters can be categorized as follows:

1) selection-based control: Parameter values and
strategies are selected irrespective of current
search state such as CoDE [9].

2) observation-based control: Proper parameter val-
ues are inferred based on the observed current
search state, and parameters and/or strategies
are dynamically controlled such as FADE [10],
DESFC [11], and LMDE [12, 13].

3) success-based control: The parameters and/or
strategies are adjusted to favor the values ob-
served in success cases such as SaDE [14], JADE
[5], SHADE [15], CADE [16] and jSO [17]. The
self-adaptation, where parameters are contained
in individuals and are evolved through the appli-
cation of evolutionary operators to the parame-
ters, is included in this category such as DESAP
[18] and jDE [19].

4) hybrid control: Multiple control methods from
different categories are combined to adjust al-
gorithm parameters such as ADEGL [20] and
JADEadm [21]. Our proposed method is included
in this category.

3.2 Studies on Search State Estimation
Search state estimation is closely related to control-

ling the balance between exploitation and exploration
[22]. When the population diversity is high, such as
in the initial population, the search mode is set to ex-
ploitation and the vicinity of promising solutions are
searched. When the diversity is low, the mode is set to
exploration and a new area is searched. For example, in
[23], the normalized distance from the center of gravity
of the population is adopted as the diversity measure.
If the measure exceeds the threshold dhigh, the search
mode is switched to exploitation. If the measure falls
below dlow, the mode is switched to exploration.

Various measures have been proposed as diversity
measures. The distance-based diversity measures are
as follows [24], where ||x − y|| is the distance between
the two vectors x and y, and the Euclidean distance is
often used.

• Diameter: Maximum distance in the population
maxi̸=j∈[1,N ] ||xi − xj ||.

• Radius: Maximum distance from the center of
gravity of the population maxi̸=j∈[1,N ] ||xi − g||,
g = 1

N

∑N
i=1 xi.

• Normalized average distance: Average distance
from the center of gravity of the population
normalized by the size of the search space
1

LN

∑N
i=1 ||xi − g||. L is the size of the search

space L = ||u− l||.

However, even if normalized, the threshold is influenced
by the population size and so on. It is still difficult to
select proper thresholds.
The goal of search state estimation is not merely to

observe diversity but rather to estimate the search state
of the population. In [25], the state is classified into
four states: Convergence, Exploitation, Exploration,
and Jumping-out. The positional relationship between
the best individual and other individuals is employed
for the classification. It is assumed that the best indi-
vidual is closest to other individuals when the popula-
tion is converging, and the best individual is farthest
from other individuals when the population is moving,
and the following measure is proposed.

di =
1

N − 1

N∑
j=1,j ̸=i

||xi − xj || (10)

DBR =
dbest − dmin

dmax − dmin
(11)

where di is the average distance between xi and other
individuals, dbest is the average distance between the
best individual and other individuals, and dmin and
dmax are the minimum and maximum values of di. If
DBR is close to 0, the state is classified as Conver-
gence, and if DBR is close to 1, the state is classi-
fied as Jumping-out. The time complexity is O(N2D)
because the distances between all individuals are cal-
culated. Since N is usually set to a multiple of D,
O(N2D) = O(N3). It is thought that a measure with
low computational complexity is necessary.
In [26], the following measure IOS (Indicator of the

Optimization State) is proposed to probabilistically
classify the search state into two states: Exploitation
and Exploration based on the distances to the best in-
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dividual and the function values.

IOS =
N∑
i=1

||fi − di|| (12)

IOS =
IOS − IOSmin

IOSmax − IOSmin
(13)

where di is the rank of the distance between the individ-
ual xi and the best individual with a smaller rank in-
dicating smaller distance. fi is the rank of the function
value with a smaller rank indicating a smaller value.
IOSmin and IOSmax are the minimum and maximum
values of IOS, respectively. The state is classified as
Exploration with the probability of IOS and as Ex-
ploitation with the probability of 1−IOS. In a scenario
where the function value deteriorates as the distance
from the optimal solution increases, IOS is small be-
cause di and fi are almost the same whether the best
solution is close to or far from the optimal solution.
However, it is suitable to estimate Converging when the
best solution is near the optimal solution, and Jumping-
out when it is far away.

4 Proposed Method

In this section, the modified search state estimation
method and the modified extreme individuals method
are proposed.

4.1 Normalized Distance Between the Center
and the Best Solution

The center of the population c can be defined as fol-
lows:

c =
1

N

N∑
i=1

xi (14)

Let the Euclidean distance between two vectors x and y
be denoted by d(x,y). The distance between the center
c and each solution xi is given by di = d(c,xi). The
normalized distance between the center and the best
solution, DCB [6] is defined as follows:

DCB =
dbest − dmin

dmax − dmin
(15)

where dbest is the distance between the center and the
best solution, and dmin and dmax are the minimum and
maximum values of di.
To avoid abrupt changes in DCB, the exponentially

smoothed moving average with the smoothing constant
0.5 is employed. The time complexity is O(ND) =
O(N2) because the distance between the center and
each solution is calculated.

4.2 Parameter Control Using Search State Es-
timation

Based on DCB, the search state was classified into
strongly Converging, Converging and Moving in PSO.

In preliminary experiments, the benchmark functions
are optimized and changes of DCB are observed using
JADE. As a result, the search efficiency can be im-
proved by classifying into Converging and Moving and
controlling F based on the classification as follows:

• DCB ∈ [0,0.05): The state is classified as “Con-
verging”, and the value of Fi is multiplied by 0.98
to speed up the convergence.

• DCB ∈ [0.4,1.0]: The state is classified as “Mov-
ing”, and the value of Fi is multiplied by 1.04.
Also, the movement vector of the population cen-
ter from previous generation to current generation
c(t)−c(t−1) is added to the generated child. As
the result, the population diversity is kept and
the moving speed is accelerated.

4.3 Parameter Control for Extreme Individu-
als

In the extreme individuals method, a population is
divided into 3 parts, top individuals (local search ap-
plied), bottom individuals (global search applied), and
other individuals (search by JADE applied). In this
study, the population is divided into the best individ-
ual, worst individual, and other individuals in order
to simplify the method and to reduce the interference
with parameter control using the search state estima-
tion. The following parameter control is adopted:

• Exploitation by the best individual: Local search
can be realized by adopting small F and large
CR. Therefore, a smaller value than µF and a
larger value than µCR are generated for Fi and
CRi, respectively, where µF and µCR are means
in JADE defined by Eqs. (6) and (7).

Fi ∼ u(0.2, µF ) (16)

CRi ∼ u(µCR, 1) (17)

where u(l, u) is a uniform random number in [l, u].

• Exploration by the worst individuals: Global
search can be realized by adopting large F and
random CR. Therefore, a larger value than µF

and a random value are generated for Fi and CRi,
respectively.

Fi ∼ u(µF , 1) (18)

CRi ∼ u(0, 1) (19)

4.4 Proposed Algorithm
The proposed algorithm “JADE with search state es-

timation using DCB and extreme individuals” (JAD-
Edcb+ex) is defined as follows:

1. Initialization: Each individual xi is randomly
generated in the search space where xij is a uni-
form random number in [lj , uj ]. The archive A is
made empty.
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2. The algorithm is stopped when a termination con-
dition is satisfied: The terminal condition in this
study is when the number of function evaluations
reaches FEmax.

3. Initialization for each generation including search
state estimation: The list of success cases S is
made empty. The population center c(t) is ob-
tained, DCB is calculated and the search state is
estimated.

4. JADE operation with parameter control using
the estimated state: For each individual xi, Fi

and CRi are generated according to Eq.(4) and
Eq.(5), respectively. Fi and CRi are modified
when the estimated state is Converging or Mov-
ing. JADE operation is executed according to
Eq.(8) and the mutant vector mi is generated.
A new child is generated from xi and mi using
binomial crossover. When the state is Moving,
c(t)− c(t− 1) is added to the child.

5. Survivor selection: If the child is better than the
parent, the child becomes a survivor. The suc-
cessful combination of parameter values (Fi, CRi)
is added to S. The defeated parent is added to
A. Otherwise, the parent xi becomes a survivor.
Return to 4. until all individuals are processed.

6. Resizing the archive and learning means: When
the size of the archive exceeds NA, randomly se-
lected elements in the archive are deleted until
the size becomes NA. The means µF and µCR

are updated using S according to Eqs.(6) and (7).
Return to 2.

Fig. 2 shows the proposed algorithm named JAD-
Edcb+ex.

5 Solving Optimization Problems

In this study, well-known thirteen benchmark prob-
lems are solved.

5.1 Test Problems and Experimental Condi-
tions

The 13 scalable benchmark functions are shown in Ta-
ble 1 [5]. All functions have an optimal value 0. Some
characteristics are briefly summarized as follows: Func-
tions f1 to f4 are continuous unimodal functions. The
function f5 has ridge landscape, f6 is a discontinuous
step function, and f7 is a noisy quartic function. Func-
tions f8 to f13 are multimodal functions.
Experimental conditions are same as JADE as fol-

lows: Population size N = 100, the pbest parameter
p = 0.05, and the learning parameter c = 0.1. Inde-
pendent 50 runs are performed for 13 problems. The
number of dimensions for the problems is 30 (D = 30).
Each run stops when the number of function evaluations

JADEdcb+ex()

{
µF =µCR=0.5; σF =σCR=0.1; NA=N;

// Initialization

P=N individuals generated randomly in S;
FE=N; A=∅;
for(t=1; FE < FEmax; t++) {

S=∅;
+ c(t) is obtained according to Eq.(14);

+ DCB is obtained according to Eq.(15);

+ The search state is estimated;

Indexes I = {Ii} is sorted according to f(xi);
for(i=1; i ≤ N; i++) {

// JADE operation

+ if(i==I1) { // best individual

+ Fi=u(0.2, µF ); CRi=u(µCR, 1);

+ }
+ else if(i==IN) { // worst individual

+ Fi=u(µF , 1); CRi=u(0, 1);

+ }
+ else {

CRi = µCR +N(0, σ2
CR);

truncate CRi to [0, 1];
do {

Fi=µF + C(0, σF );

} while(Fi ≤ 0);
if(Fi > 1) Fi = 1;

+ if(The state is Converging or Moving)

+ Fi and CRi are modified;

mi=generated according to Eq.(8);

vi=generated from xi and mi by crossover;

+ if(The state is Moving) vi=vi+c(t)-c(t− 1);

+ }
FE=FE+1;

// Survivor selection

if(f(vi) < f(xi)) {
zi=vi;

S=S ∪ {(Fi, CRi)}; // add a success case

A=A ∪ {xi};
}
else zi = xi;

}
P = {zi};

// Resizing the archive

while(|A|>NA)

remove a randomly selected element from A;

// Learning means

if(|S| > 0) {
µF = (1− c)µF + c

∑
Fi∈S F 2

i /
∑

Fi∈S Fi;

µCR = (1− c)µCR + c
∑

CRi∈S CRi/|S|;
}

}
}

Fig. 2: Algorithm of JADEdcb+ex

exceeds the maximum number of evaluations FEmax.
In each function, different FEmax is adopted.

5.2 Experimental Results
In the experiment, JADE, JADE with parame-

ter control using the search state estimation only
(JADE+DCB), JADE with the extreme individual
method only (JADE+extreme), and the proposed
method (JADEdcb+ex). Table 2 shows the experimen-
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Table 1: Test functions of dimension D. These are
sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 2.21,
Rosenbrock, step, noisy quartic, Schwefel 2.26, Rast-
rigin, Ackley, Griewank, and two penalized functions,
respectively[27].

Test functions Search space

f1(x) =
∑D

i=1 x
2
i [−100, 100]D

f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i
j=1 xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1⌊xi + 0.5⌋2 [−100, 100]D

f7(x) =
∑D

i=1 ix
4
i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1 −xi sin
√

|xi|
+D · 418.98288727243369

[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1
i=1 (yi − 1)2

{1 + 10 sin2(πyi+1)} + (yD − 1)2]

+
∑D

i=1 u(xi, 10, 100, 4)
where yi = 1 + 1

4
(xi + 1) and

u(xi, a, k,m) = k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1) +
∑D−1

i=1 (xi − 1)2

{1+sin2(3πxi+1)}+(xD−1)2

{1 + sin2(2πxD)}] +
∑D

i=1 u(xi, 5, 100, 4)

[−50, 50]D

tal result. The mean value and standard deviation of
best objective values over 50 runs are shown in the top
row for each function. The median value is shown in the
bottom row for each function. Because a small num-
ber of failure trials were observed, median values are
compared rather than mean values between algorithms.
Also, Wilcoxon signed rank test is conducted, and the
results for each function are displayed adjacent to the
median value in parentheses. Symbols ‘+’, ‘−’, and
‘=’ indicate that each algorithm is significantly better
than JADE, significantly worse than JADE, and not
significantly different from JADE, respectively. Sym-
bols ‘++’ and ‘−−’ denote a significance level of 1%,
while ‘+’ and ‘−’ indicate a significance level of 5%.
The result of the experiment is first evaluated by the

median values. JADEdcb+ex attained the best median
results in 9 functions f1, f2, f5, f6, f8 and f10 − f13.
JADE+DCB attained the best median results in 4
functions f3, f4, f6 and f7. JADE+extreme attained
the best result in function f9. Therefore, it is thought
that the proposed method succeeded to strengthen the
convergence and the movement of the individuals.

JADEdcb+ex attained significantly better results
than JADE in 12 functions excluding f7 and attained
no significantly worse result. Since the function f7 is
a noisy function, it is thought that the noise makes
it difficult to determine whether the state is Con-
verging. JADE+DCB attained significantly better
results than JADE in 10 functions excluding f5, f7
and f9, and attained significantly worse result in f9.
The JADE+extreme attained significantly better re-
sults than JADE in 7 functions and no significantly
worse result. It is thought that JADEdcb+ex is the best
algorithm followed by JADE+DCB, JADE+extreme
and JADE.
Fig. 3 shows how µF is controlled based on the search

state estimated using DCB in f8. The vertical axis rep-
resents µF (left) and DCB (right), and the horizontal
axis represents the number of function evaluations. The
function f8 has the optimal solution near the edge of
the search space. In early generations, Moving state is
detected and µF becomes larger than that in JADE to
move toward the optimal solution faster. In later gen-
erations, Converging state is detected and µF becomes
smaller than that in JADE to speed up the convergence.
It is thought that the search state estimation and the
control of µF is appropriate in f8.

Converging

Moving

Fig. 3: Control of µF based on DCB

6 Conclusions

In this study, we proposed a new search state esti-
mation method using DCB which is the normalized
distance between the population center and the best
solution in the population and which has low time com-
plexity. If DCB is small, the population is estimated
to be Converging. If DCB is large, the population is
estimated to be Moving. In order to improve the per-
formance of JADE, which is a representative adaptive
DE, we proposed the modified control of Fi according
to the estimated search state. If the state is Converg-
ing, Fi is decreased to speed up the convergence. If
the state is Moving, Fi is increased and the movement
vector of the population center is added the the child
to strengthen the movement. Also, simplified extreme
individual method is introduced where the best indi-
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Table 2: Experimental result on JADE and the proposed methods

func. FEmax JADE JADE+DCB JADE+extreme proposed
f1 150000 2.18e-57± 1.2e-56 8.62e-62± 5.9e-61 1.42e-60± 9.0e-60 1.02e-65± 4.9e-65

3.6019e-63 6.0304e-67 (++) 1.5273e-64 (++) 1.0633e-68 (++)
f2 200000 1.64e-25± 7.5e-25 1.01e-27± 6.5e-27 2.71e-38± 1.2e-37 4.41e-42± 1.0e-41

1.3790e-35 2.5203e-40 (++) 1.4409e-40 (++) 2.9647e-43 (++)
f3 500000 4.20e-83± 2.3e-82 2.01e-85± 7.0e-85 1.33e-83± 6.9e-83 6.38e-84± 2.5e-83

1.5392e-86 4.0832e-88 (+) 7.9984e-87 (=) 6.9726e-88 (++)
f4 500000 1.29e-62± 3.2e-62 3.92e-64± 2.4e-63 6.64e-63± 1.8e-62 5.68e-65± 1.5e-64

3.5103e-64 2.4886e-66 (++) 1.3677e-64 (+) 2.5811e-66 (++)
f5 300000 7.97e-02± 5.6e-01 1.59e-01± 7.8e-01 1.42e-18± 5.7e-18 1.59e-01± 7.8e-01

2.1842e-20 6.0227e-21 (=) 1.5050e-20 (=) 1.5137e-21 (++)
f6 10000 6.04e+00± 1.9e+00 3.94e+00± 1.4e+00 5.78e+00± 1.8e+00 4.32e+00± 1.6e+00

3.0000e+00 2.0000e+00 (++) 3.0000e+00 (=) 2.0000e+00 (++)
f7 300000 6.25e-04± 2.3e-04 5.81e-04± 2.5e-04 6.63e-04± 2.3e-04 6.81e-04± 2.2e-04

2.9515e-04 2.8437e-04 (=) 3.0475e-04 (=) 3.1435e-04 (=)
f8 100000 7.11e+00± 2.8e+01 4.74e+00± 2.3e+01 2.37e+00± 1.7e+01 4.74e+00± 2.3e+01

1.9616e-05 4.6628e-06 (++) 2.8411e-06 (++) 2.4069e-07 (++)
f9 100000 1.86e-04± 8.9e-05 2.78e-04± 1.8e-04 1.22e-04± 6.5e-05 1.49e-04± 1.5e-04

8.0951e-05 1.1614e-04 (−−) 5.0422e-05 (++) 5.6175e-05 (++)
f10 50000 3.65e-09± 7.1e-09 8.47e-10± 6.4e-10 2.21e-09± 1.6e-09 5.59e-10± 3.4e-10

1.0813e-09 2.8472e-10 (++) 8.2447e-10 (=) 2.4260e-10 (++)
f11 50000 3.77e-08± 1.8e-07 2.18e-06± 1.5e-05 3.62e-11± 8.2e-11 1.19e-06± 8.3e-06

3.4603e-12 7.4690e-13 (++) 2.5610e-12 (=) 2.0700e-13 (++)
f12 50000 1.57e-16± 3.8e-16 4.41e-17± 2.4e-16 4.86e-17± 7.6e-17 2.13e-18± 4.9e-18

2.8900e-17 1.2963e-18 (++) 5.8706e-18 (+) 4.5530e-19 (++)
f13 50000 1.25e-15± 2.1e-15 8.90e-17± 3.8e-16 2.59e-16± 9.6e-16 1.06e-17± 1.7e-17

2.0153e-16 6.4041e-18 (++) 2.8884e-17 (++) 2.0565e-18 (++)
+ 10 7 12
= 2 6 1
− 1 0 0

vidual makes a local search and the worst individual
makes a global search. The numerical experiment for
13 functions showed that the proposed method worked
well in 12 functions and attained the better median
results than JADE in 12 functions.
In the future, we will apply the proposed method to

other population-based optimizers.
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